

Energy management at WWTPs in the Baltic Sea region - Gdańsk case study

Gdańsk Water Utilities Ltd Marek Swinarski

Boltenhagen, 14-15 February 2017

Plan of my presentation:

- Wastewater treatment and sludge handling
- Energy efficiency
- Electricity balance
- Heat balance
- Possibilities to improve energy efficiency

Layout of the Wschód WWTP

SLUDGE PROCESSING:

- excess sludge disintegration
- 3 double-belt filter presses (3×150 m³/h)
- 4 digesters (4×7,000 m³)

- 4 centrifuges (20-35 m³/h)
- chemical P removal
- STTP (49 t DS/d)

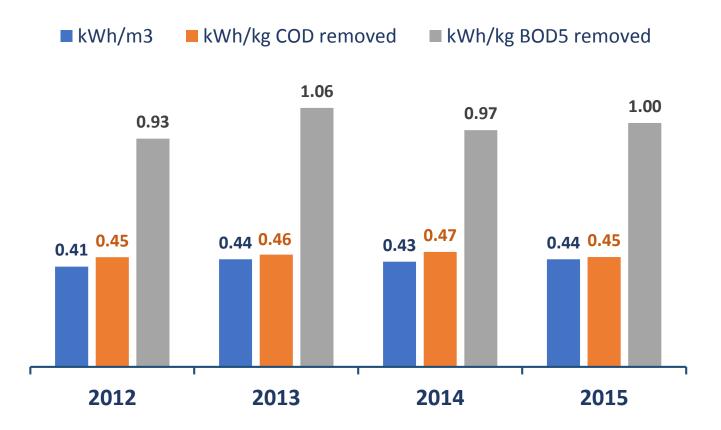
- biogas treatment
- 2 biogas tanks (2×2,500 m³)
- CHP (4×290 Nm³/h)

BIOLOGICAL TREATMENT:

- 6 A²O-based bioreactors (26,350 m³ each)
- 12 final settling tanks (∅ 44 m)

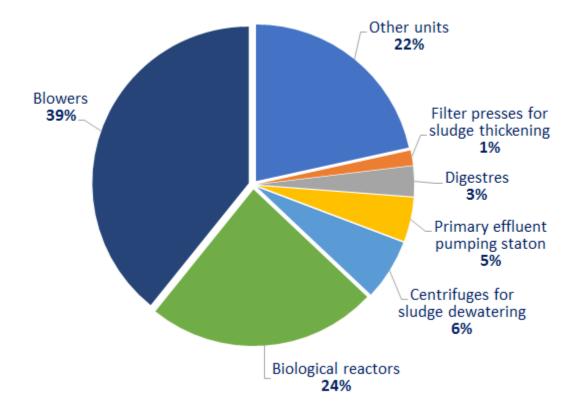
MECHANICAL TREATMENT:

- 4 screens (6 and 10 mm)
- 3 aerated grit chambers (30 m)
- 4 primary settling tanks (∅ 46 m)


Wastewater treatment efficiency

Parameter	Requirements		Average values in 2015	
	Concentration	Reduction	Concentration	Reduction
	g/m³	%	g/m³	%
COD	125	75	33	97
BOD ₅	15	90	2.8	99
TSS	35	90	5.6	99
TN	10	70 – 80	<mark>7.5</mark>	<mark>92</mark>
NH ₄ -N	10	-	0.6	99
NO ₃ -N	-		5.1	-
TP	1	80	<mark>0.4</mark>	<mark>97</mark>

Energy efficiency of the WWTP



Electricity consumption in the WWTP

Electricity consumption in 2013:

• 16,060 MWh/a

Energy measurements at the WWTP

18 additional energy meters:

- screens
- grit chamber blower
- grit washing station
- primary settling tanks
- biological reactors (5)

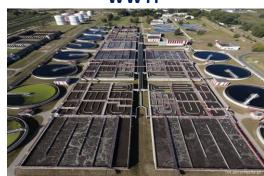
- return and excess sludge pumping stations (5)
- fermented sludge pumping station
- system of chemical P removal from reject water
- Fe₂(SO₄)₃ dosing station
- · wastewater disposal station

Electricity balance 2016

4,400 MWh/a


CHP

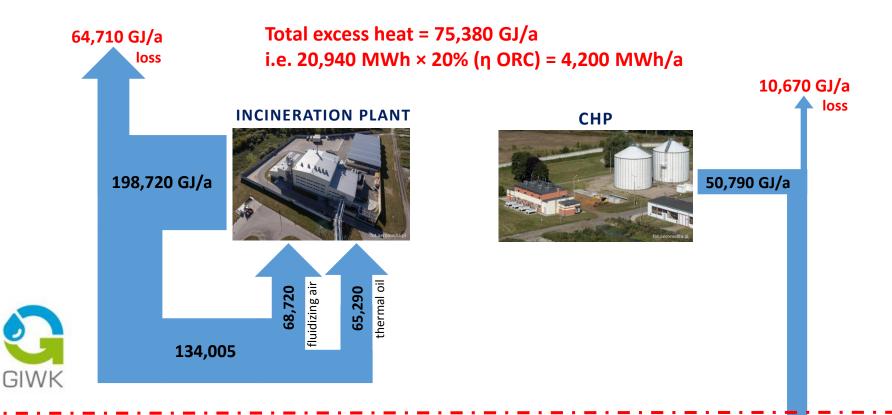
P_{gross} = 15,300 MWh/a Cons = 770 MWh/a


 $P_{net} = 14,600 \text{ MWh/a}$

WWTP

10,200 MWh/a

Electricity gap = 4,800 MWh/a


How to plug the gap?

10,200 MWh/a

power network

Heat balance 2016

Main ideas to improve energy efficiency

Thank you for your attention!

Feel invited to the IWAMA workshop on sludge management in our beautiful city of Gdańsk

