
Production of synthetic fuels and green hydrogen from sludge: TO-SYN-FUEL

IWAMA 4th International Workshop

Smart Sludge Management

Tartu, Estonia Thursday 8th February 2018

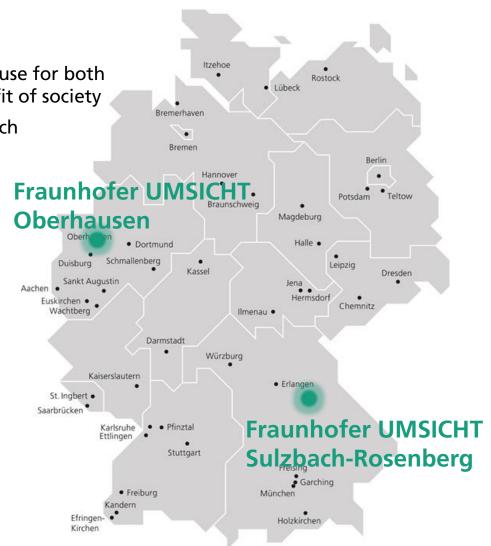
Nils Jäger

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement No 745749.

Fraunhofer-Gesellschaft Research and development

- International research with focus on direct use for both private and public sector, and for the benefit of society
- Application-orientated fundamental research

Entrepreneurship


- Institutes organized as profit-centers
- A third of the budget are revenues from industrial projects
- Spin-offs are promoted

Contracting parties/ clients

- Industrial and service companies
- Public sector

Facts and figures

- > 24 500 staff members
- 69 research institutes
- 2.1 bn € annual research budget

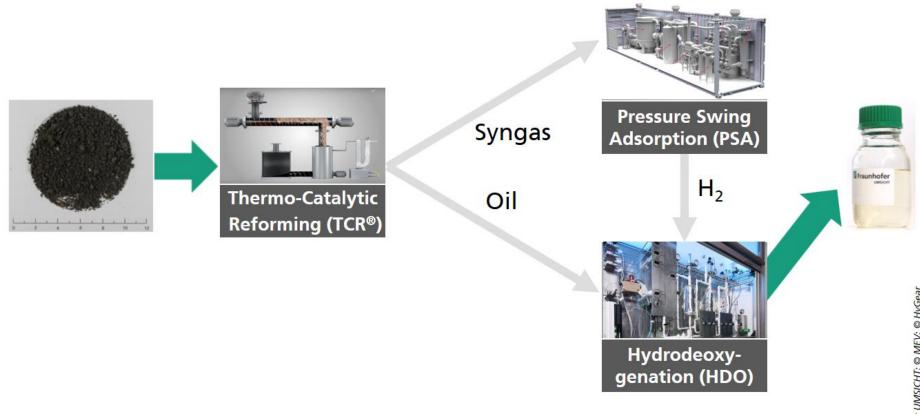
TO-SYN-FUEL

The Demonstration of Waste Biomass to Synthetic Fuels and Green Hydrogen

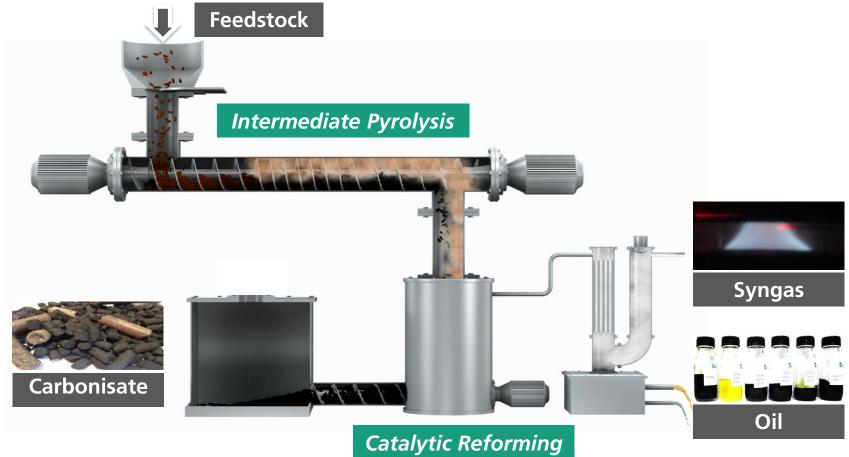
- Contribute to the Renewable Energy Directive targets for renewable energy by validating waste feedstocks for the production of fuels
- Production of green hydrogen, diesel and gasoline equivalent liquid fuels from sewage sludge

- Showcase for future sustainable investment and economic growth across Europe
- Development of a business case, LCA and dissemination of results

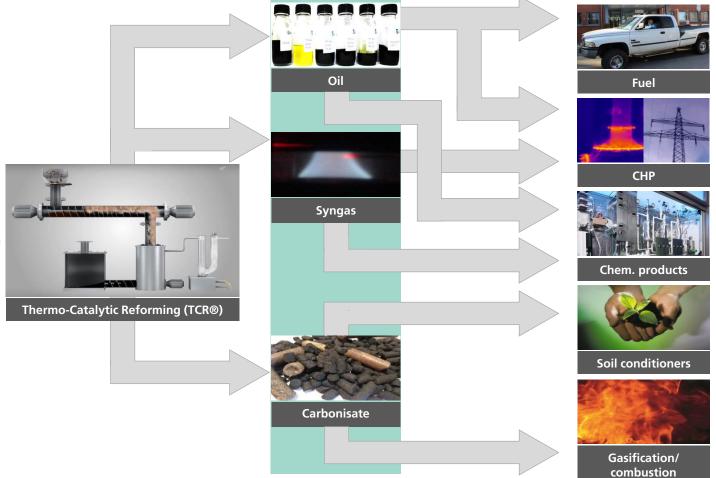
TO-SYN-FUEL Project Overview


Project start May 2017 (project's lifetime 48 month)

12 partners from 5 different countries



TO-SYN-FUEL Core components


Thermo-Catalytic Reforming TCR[®] A Platform Technology to use residues and to produce storable energy carriers

Thermo-Catalytic Reforming TCR[®] Concept

Sheet 8 © Fraunhofer UMSICHT

Thermo-Catalytic Reforming TCR[®] Products and their characteristics

Syngas with a high hydrogen content

- Almost tar, aromatic and dust free gas
- Engine-ready gas
- Adjustable hydrogen content

Carbonisate for a variety of applications

- High soil stability
- Transportable and storable
- Very low H and O content

Fuel with a high quality

- No tar issues
- Miscible with fossil/bio fuels
- Low fraction of non-volatiles

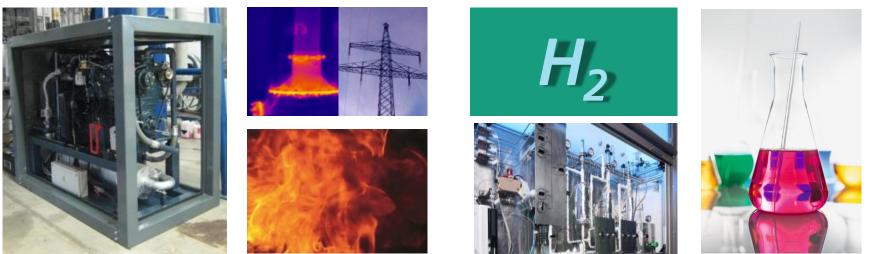
Thermo-Catalytic Reforming TCR[®] Syngas from sewage sludge

		H ₂	35 ± 3 v/v%
the state	Engine-ready gas	СО	8 ± 2 v/v%
	HHV: ≈23 MJ/m³	CO ₂	30 ± 3 v/v%
and the second		CH ₄	14 ± 2 v/v%
		C_xH_y	3 ± 1 v/v%

Thermo-Catalytic Reforming TCR® Product utilization – Syngas

Energetic Use

CHP Engine


Dual Fuel Engine (with Bio-oil)

Gas Burner (Heating)

Material Use

Synthesis Gas

Green Hydrogen

Thermo-Catalytic Reforming TCR[®] Carbonisate from sewage sludge

	С	33.5 wt.%
Very low H and O content HHV: ≈10.5 MJ/kg	н	0.1 wt.%
	Ν	3.5 wt.%
	S	0.7 wt. %
	O (diff.)	<2 wt. %
	H ₂ 0	<1 wt. %
	Ash	62 wt. %

Thermo-Catalytic Reforming TCR® Product utilization – char

Energetic Use

Co-Combustion in Power plant

Cement Industry

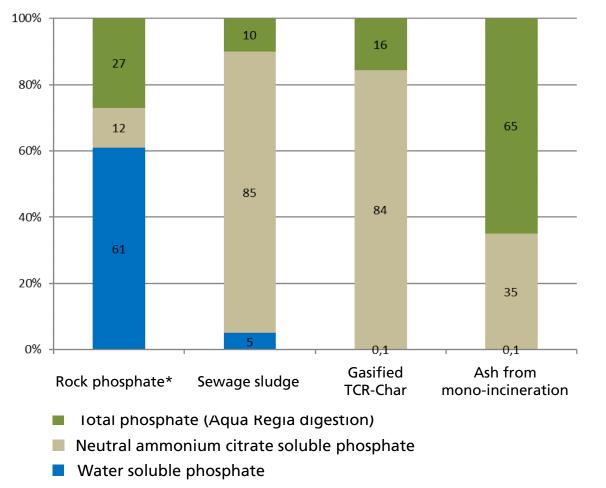
Gasification

Material Use

Soil Improvement

Phosphorous recovery

Fraunhofer


Sheet 13 © Fraunhofer UMSICHT

Thermo-Catalytic Reforming TCR[®] Phosphorous recovery from TCR-char

Thermo-Catalytic Reforming TCR[®] Phosphorous recovery from TCR-char

Sources: Kratz&Schnug 2008; FhU 2016, Krüger&Adam 2015

*partial solubilisation

Thermo-Catalytic Reforming TCR[®] Bio-oil from sewage sludge

Taunhofer UMSICHT	High quality, engine-ready LHV: ≈38 MJ/kg	C H N S O (diff.) H ₂ O TAN	83.7 wt. % 9.0 wt. % 2.1 wt. % 0.9 wt. % 3.7 wt. % 0.6 wt. %
12 Th		Ash	< 0.005 wt.%

TCR[®] bio-oil as renewable fuels General properties of TCR[®] bio-oil

- TCR[®] bio-oil is miscible with ethanol, biodiesel, vegetable oil, gasoline, diesel, crude oil...
- TCR[®] bio-oil + syngas directly applicable on dual fuel engines
- TCR[®] bio-oil is free of organic acids
- TCR[®] bio-oil is atmospheric distillable without coking
 - Distillation example of TCR[®] bio-oil

Thermo-Catalytic Reforming TCR® Product utilization – Bio-Oil

Crude TCR[®]-Oil

Fuel Blends

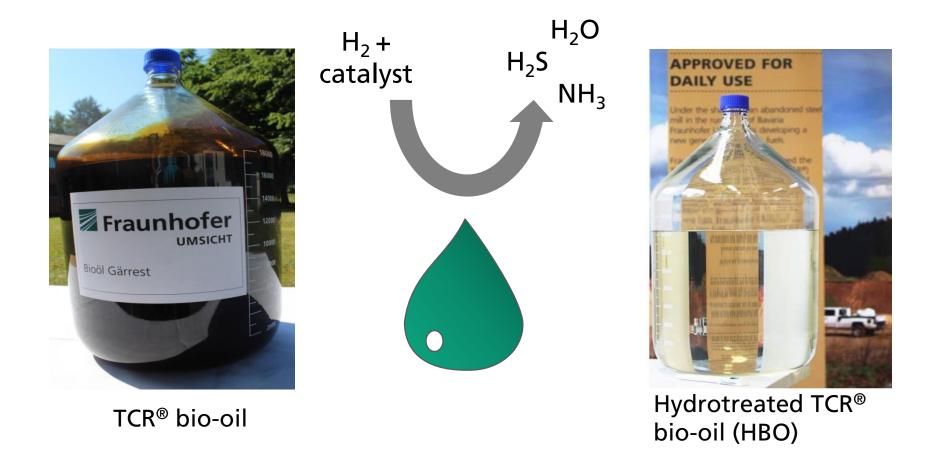
Dual Fuel Engine (with Syngas)

CHP Engine

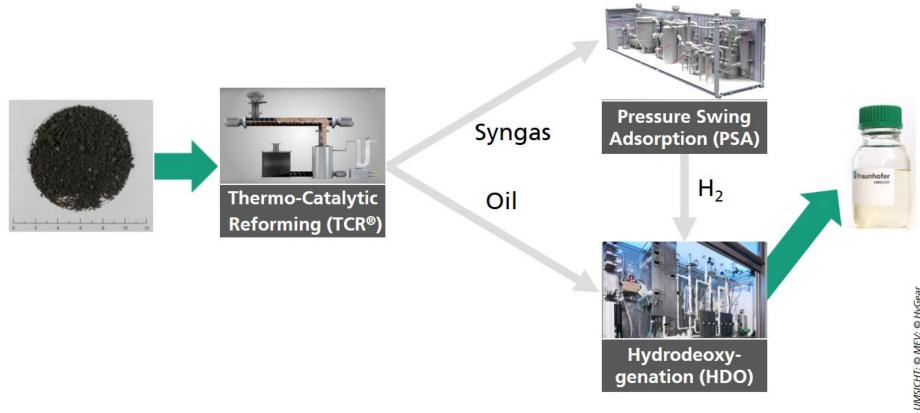
Up-graded TCR®-Oil

Green Diesel

Green Naptha and Jet Fuel

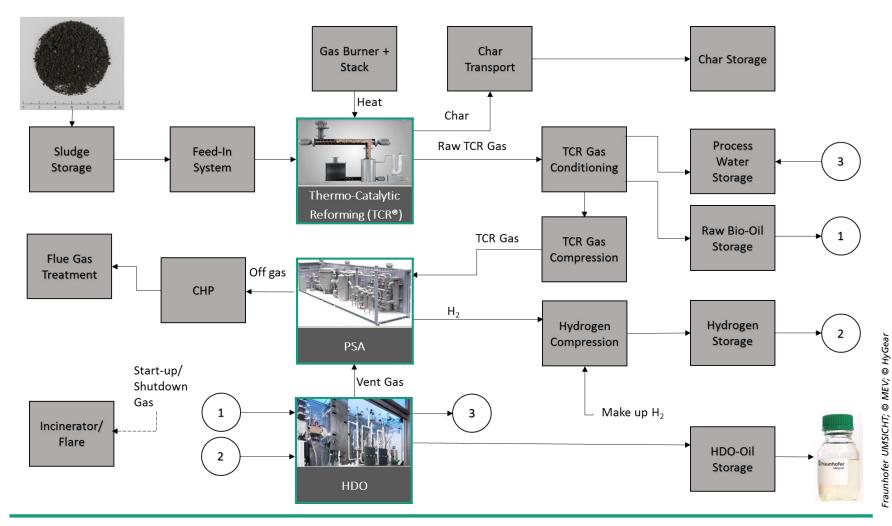

Green Chemicals

Upgrading of TCR[®] bio-oil for renewable fuels Hydrotreating of TCR[®] bio-oil


Upgrading of TCR[®] bio-oil for renewable fuels Hydrotreating of TCR[®] bio-oil from digestate

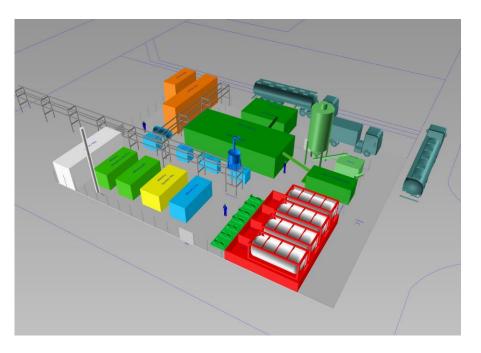
TCR [®] BIO-OIL			HYDROTREATED TCR [®] BIO-OIL (HBO)
aunhofer unsign		HYDROTREATING	
C77.6 wt%H8.0 wt%N4.6 wt%S0.6 wt%O (diff.)7.0 wt%H2O2.2 wt%Ash< 0.005 wt%	LHV 34.0 MJ/kg TAN 2.1 mg KOH/g Viscosity 4.4 mm²/s Density 1014.4 kg/m³	HYDROI	$\begin{array}{cccccc} C & 86.2 \mbox{ wt\%} \\ H & 13.0 \mbox{ wt\%} \\ N & < 0.5 \mbox{ wt\%} \\ S & 0.01 \mbox{ wt\%} \\ O \mbox{ (diff.)} & < 0.7 \mbox{ wt\%} \\ H_2O & 0.003 \mbox{ wt\%} \\ Ash & < 0.005 \mbox{ wt\%} \end{array} \begin{array}{c} LHV & 42.25 \mbox{ MJ/kg} \\ TAN & < 0.1 \mbox{ mg KOH/g} \\ Viscosity & 0.97 \mbox{ mm}^2/s \\ Density & 815 \mbox{ kg/m}^3 \\ Flash \mbox{ point } & < -20 \mbox{ °C} \\ Yield & 83 \mbox{ wt\%} \end{array}$

Neumann, J.; Jäger, N.; Apfelbacher, A.; Daschner, R.; Binder, S.; Hornung: Biomass and Bioenergy, 2016



TO-SYN-FUEL Core components

TO-SYN-FUEL Engineering Scope



TO-SYN-FUEL Next steps

- Construction phase
- Commissioning phase
- Demonstration phase
 - 7000 h of operation
 - 300 kg/h of sewage sludge
 - 200 t of HDO liquid fuels

Q1/2018 Q1/2019 Q2/2019-2021

TO-SYN-FUEL Stakeholders engagement

If you would like to become more involved with the project platform and include your organisation details in the TO-SYN-FUEL Stakeholder Database, please use the Stakeholder Registration Form.

http://www.tosynfuel.eu/?page_id=2489

Keep in touch with the project to learn about the development of best practices regarding market implementation, commercialization and deployment of new technologies and processes.

Thank you very much for your attention **25ynflel**

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement No 745749.

Contact:

Fraunhofer UMSICHT Institute Branch Sulzbach-Rosenberg

An der Maxhütte 1 92237 Sulzbach-Rosenberg Internet: http://www.umsicht-suro.fraunhofer.de

Nils Jäger

E-Mail:

E-Mail: nils.jaeger@umsicht.fraunhofer.de

Prof. Dr. Andreas Hornung

andreas.hornung@umsicht.fraunhofer.de

